Difference between revisions of "Resource shortage"
(→Disk quota) |
|||
Line 103: | Line 103: | ||
== CPU == | == CPU == | ||
− | There are two parameters controlling fair CPU scheduler in OpenVZ: cpuunits and cpulimit. | + | There are two parameters controlling fair CPU scheduler in OpenVZ: cpuunits and cpulimit. |
+ | |||
+ | Cpuunits are set via | ||
+ | <pre> | ||
+ | vzctl set 101 --cpuunits 1000 --save | ||
+ | </pre> | ||
+ | For example. If you set a cpuunit for one container to a value and set a cpuunit on another container to a different value, the time allotted to each of the containers will be the ratio of the two units. Let's use a real example. | ||
+ | |||
+ | We did the following: | ||
+ | <pre> | ||
+ | vzctl set 101 --cpuunits 1000 --save | ||
+ | vzctl set 102 --cpuunits 2000 --save | ||
+ | vzctl set 103 --cpuunits 3000 --save | ||
+ | </pre> | ||
+ | |||
+ | If we started a cpu intensive application on each VE, then 103 would be given 3 times as much cpu time as 101 and 102 would get twice as much as 101, but some fraction of what 103 got. Here's how to determine what the real ratios are. | ||
+ | |||
+ | Add the three units, 1000+2000+3000 = 6000 | ||
+ | |||
+ | 101 gets 1000/6000 or 1/6th of the time. (16%) | ||
+ | 102 gets 2000/6000 or 1/3rd of the time. (34%) | ||
+ | 103 gets 3000/6000 or 1/2 of the time. (50%) | ||
+ | |||
+ | CPULIMIT | ||
+ | |||
+ | The cpulimit parameter sets the absolute maximum limit for a container to a percent value. For instance: | ||
+ | <pre> | ||
+ | vzctl set 101 --cpulimit 25 --save | ||
+ | </pre> | ||
+ | says that container 101 cannot ever have more than 25 percent of the cpu even if the cpu is idle for the other 75% of the time. | ||
{{Stub}} | {{Stub}} |
Revision as of 14:06, 5 September 2008
Sometimes you see strange failures from some programs inside your container. In some cases it means one of the resources controlled by OpenVZ has hit the limit.
The first thing to do is to check the contents of the /proc/user_beancounters file in your container. The last column of output is the fail counter. Each time a resource hits the limit, the fail counter is incremented. So, if you see non-zero values in the failcnt column that means something is wrong.
There are two ways to fix the situation: reconfigure (in some cases recompile) the application, or change the resource management settings.
UBC parameters
Here is an example of current UBC values obtained from /proc/user_beancounters
file in container 123:
# cat /proc/user_beancounters Version: 2.5 uid resource held maxheld barrier limit failcnt 123: kmemsize 836919 1005343 2752512 2936012 0 lockedpages 0 0 32 32 0 privvmpages 4587 7289 49152 53575 0 shmpages 39 39 8192 8192 0 dummy 0 0 0 0 0 numproc 20 26 65 65 0 physpages 2267 2399 0 2147483647 0 vmguarpages 0 0 6144 2147483647 0 oomguarpages 2267 2399 6144 2147483647 0 numtcpsock 3 3 80 80 0 numflock 3 4 100 110 0 numpty 1 1 16 16 0 numsiginfo 0 1 256 256 0 tcpsndbuf 0 0 319488 524288 0 tcprcvbuf 0 0 319488 524288 0 othersockbuf 6684 7888 132096 336896 0 dgramrcvbuf 0 8372 132096 132096 0 numothersock 8 10 80 80 0 dcachesize 87672 92168 1048576 1097728 0 numfile 238 306 2048 2048 0 dummy 0 0 0 0 0 dummy 0 0 0 0 0 dummy 0 0 0 0 0 numiptent 10 16 128 128 0
You can see if you hit the limit for some UBC parameters by analyzing the last column (named failcnt
). It shows a number of failures for this counter, i.e. a number of times a parameter hit the limit. Usually what you need to do is to increase the parameter in question. But you need to do it carefully, and here is how.
- Get the current values for the parameter's barrier and limit. For example, we want to increase kmemsize values. From
/proc/user_beancounters
we see thatkmemsize
barrier is 2752512, and its limit is 2936012. - Increase the values. Say, we want to double
kmemsize
. This is how it can be done using built-in bash arithmetics:# vzctl set 123 --kmemsize $((2752512*2)):$((2936012*2)) --save
By using the
--save
flag, we indicate we want to apply the new setting to the running container and save it in the configuration file (from which the settings will be taken during next container start). - Check the new configuration. Issue the following command:
# vzcfgvalidate /etc/vz/conf/123.conf
If something is wrong, you need to fix it as suggested by the utility.
For more in-depth explanation of different parameters, their meaning and how to set them properly, see setting UBC parameters.
Disk quota
To check if your container exceeded its disk quota, use the following commands (inside a container):
# df Filesystem 1K-blocks Used Available Use% Mounted on simfs 1048576 327664 720912 32% / # df -i Filesystem Inodes IUsed IFree IUse% Mounted on simfs 200000 18857 181143 10% /
The first command shows disk space usage and the second command shows the inodes usage (you can roughly use the inodes count as a number of files/directories on your system).
If one of the commands shows a usage of 100% you have exceeded one of the disk quota limits.
You can increase the limit from the host system (CT0 aka VE0) only. This is how:
- Get the current values for disk quota:
# vzquota stat 123 resource usage softlimit hardlimit grace 1k-blocks 327664 1048576 1153434 inodes 18857 200000 220000
- To increase the disk space quota, use vzctl set --diskspace. For example, we want to increase it by a factor of 2:
vzctl set 123 --diskspace $(( 1048576*2 )):$(( 1153434*2 )) --save
- To increase the disk inodes quota, use vzctl set --diskinodes. For example, we want to increase it by a factor of 3:
vzctl set 123 --diskinodes $(( 200000*3 )):$(( 220000*3 )) --save
Note: shell does not support floating-point arithmetic, i.e. you can not use expressions like $(( 220000*1.5 )) . To use floating point, try bc instead, something like this: $(echo 220000*1.5 | bc) .
|
CPU
There are two parameters controlling fair CPU scheduler in OpenVZ: cpuunits and cpulimit.
Cpuunits are set via
vzctl set 101 --cpuunits 1000 --save
For example. If you set a cpuunit for one container to a value and set a cpuunit on another container to a different value, the time allotted to each of the containers will be the ratio of the two units. Let's use a real example.
We did the following:
vzctl set 101 --cpuunits 1000 --save vzctl set 102 --cpuunits 2000 --save vzctl set 103 --cpuunits 3000 --save
If we started a cpu intensive application on each VE, then 103 would be given 3 times as much cpu time as 101 and 102 would get twice as much as 101, but some fraction of what 103 got. Here's how to determine what the real ratios are.
Add the three units, 1000+2000+3000 = 6000
101 gets 1000/6000 or 1/6th of the time. (16%) 102 gets 2000/6000 or 1/3rd of the time. (34%) 103 gets 3000/6000 or 1/2 of the time. (50%)
CPULIMIT
The cpulimit parameter sets the absolute maximum limit for a container to a percent value. For instance:
vzctl set 101 --cpulimit 25 --save
says that container 101 cannot ever have more than 25 percent of the cpu even if the cpu is idle for the other 75% of the time.